Tag Archive | Revit 2014

Copy / Monitor in Revit – Example

Here is a short video briefly demonstrating how the Copy / Monitor function works in Revit 2014. It is a very useful tool to use for multi disciplined projects where worksharing is enabled.

Copy / Monitor allows users to link in other Revit models into their project, and monitor them for any changes which are made to the model, ensuring the latest changes are reflected in their own project.

In this example, I have monitored the grid lines, and for demo purposes, moved a grid line to show how this effects the model that the file is linked in to.

Creating simple parametric families in Revit – Part 1

Today, I will be showing you how to create simple parametric families in Revit. This tutorial is for anyone learning Revit who hasn’t yet got into creating families. I will be continuing to post more family tutorials so keep checking back over the coming weeks for more. This tutorial will show you how to create a simple ‘cube family’ with a fixed elevation height with parametric width and height as well as material options. 

The first thing you want to do, is to create a new generic family template. When deciding what template to use, you should take into consideration what kind of family you are creating. For example, if you are creating a light fixture, you would of course use the light fixture family template. Be sure to think about where the family will be hosted, if it will be hosted on the ceiling, make sure you also use a ceiling based family. 

uploaded image

Once you have your generic family template loaded, you will want to tile the windows. (Be sure you have no other active projects open) The reason you want to do this is to give you a good overview of all relevant views when creating your family. Plan view, Elevation front, Elevation left (or right) and 3D view. 

uploaded image

Now you should see 4 equally sized windows fitted to your screen. In case the view has been obscured, zoom to fit in each window (double click mouse wheel). Now the most important part about creating families is using reference planes. Reference planes are crucial when designing families, as these will act as your control dimensions / constraints. Create a square with 4 seperate reference planes as shown in the image below. Always remember to draw your reference planes clockwise, this will be important for future developments. 

uploaded image

Now you have set constraints to the floor plan view of the project, it is now time to set some elevation height constraints. We do this with the use of dimensions (di), by adding a dimension line to our elevation view. If you have a certain height you want your cube to be, then measure it off here, otherwise, for now just follow the example shown in the images below. 

uploaded image

Once we have set some dimensions on our reference planes, we want to give these dimensions a parameter. Parameters are used to give custom or fixed assets to our families. Now you want your elevation view, where you have just created a dimension to be active. Highlight your dimension and click on the dropdown menu next to label, as shown below. To start with, the only option you will see is ‘Add parameter…’uploaded image

We are now going to add a parameter to this dimension line, constraining the elevation height of the cube. As shown in the image below, we will create a name for this dimension parameter ‘Height of cube’. Be sure the ‘Group parameter under’ option is set to ‘Dimensions’ In this case, we will keep it as a ‘Type’ parameter. This means that we can use this parameter to constrain the height of the family to the ‘Height of cube’ parameter, which you can see is ‘2214mm’.

uploaded image

Once you have created a parameter for your ‘Elevation left’ view, you will want to do the same thing for your dimension lines you created on the ‘Floor plan’ view. Click on the dimension defining the height and add a new parameter label. This time we will call the dimension ‘Height’ again checking it is set as a dimension. This time we will use an ‘Instance parameter’ so click the ‘Instance’ checkbox. Instance parameters will give the user of the family the option to define custom settings, in this case height for the cube. Follow the exact same steps mentioned above for your ‘Width’ dimension on the ‘Floor plan’ view. You will now have 3 dimension, with 3 new dimension labels.

uploaded image

Now, once our template is set up and constrained we are going to start creating some actual physical geometry. We do this of course with the Revit massing tools. As shown above, navigate to the ‘Design’ tab and click on ‘Solid Extrusion’. You now want to draw a box with the square line creation tool, covering the reference planes you have set, as shown in the image above. Before you finish your extrusion, you want to edit some of the extrusion properties.

uploaded image

We are now going to modify the ‘Extrusion End’ constraints, otherwise known as the elevation height, or extrusion height. Click on the small grey box at the end of the ‘Extrusion End’ bar. You will now see the ‘Associate Family Parameter’ dialogue appear. You will also see the 3 new paramaters you have just created. As we are now trying to define the extrusion height of the cube, we will select our ‘Height of cube’ parameter. Click OK. You will now see that the ‘Extrusion End’ bar is greyed out.

uploaded image

The final parameter we are going to add is to be for a material. The reason we do this, is so that the user of the family, in a project environment will be able to choose which material they want the family to be. For more detailed families it is possible to split the materials into different sections, but I will be discussing that in another post. For now, we want to add a parameter for the material. Simply click on the small box at the right side of the materials bar and click on ‘Add parameter…’ We will name this parameter ‘Cube Material’ and make sure it is set as a ‘Material and finishes’ parameter and set as an ‘Instance’.

uploaded image

You can now finish your extrusion by clicking on the green tick in the modify extrusion ribbon. You should now be seeing something similar to the image above. If not, make sure all of your views are active and zoomed to fit. You can now save this family. Revit > Save As > Family – I like to add all my custom families to a new folder I have created in the Autodesk library, that way they are all stored together, but you can choose to save it wherever suits you best.

uploaded image

Once you have saved your family, Use the Revit > Close button. You can now open up a new architectural project file template, or the project where you want to add your newly created family. You can now add your family the way you always would > Place component, locate your family and load it. You will now see your cube in a project view. Here you will be able to set some custom parameters, such as material, width and height. And that is it! Extremely simple, and good foundation knowledge for creating Revit families. I will be posting part 2 in my Revit familys series soon. Hope this has helped someone who is having trouble, or someone who is just starting to use Revit. Any problems or questions, just leave a comment!

View Part 2 here – Creating simple parametric families in Revit – Part 2 Tables